HYBRID STRUCTURE MANUAL

for houses that have been built under the HOUSING RECONSTRUCTION PROGRAMME

Government of Nepal
National Reconstruction Authority

Singhadurbar, Kathmandu
Contents

PART-1: Background and Characteristics of Hybrid Structure

1. Background ...-6
2. Definition ...-8
3. Limitation ...-10
4. Failure pattern...-14
5. Timing of inspection...-16

PART-2: Technical Specification of Hybrid Structure

1. Shape and Size of building ..-26
2. Materials ...-28
3. Connection and joint...-32
4. Frame action...-46
5. Roof ...-60

APPENDIX

1. Inspection sheet ...-68
2. Prototype drawings...-72
3. Structural Calculation ..-76
4. Structural Analysis ...-82
PART-1: Background and Characteristics of Hybrid Structure

1. Background
2. Definition
3. Limitation
4. Failure pattern
5. Timing of inspection
1. Background

On 25th April, an earthquake of magnitude 7.8 struck with epicenter in Barpak, Gorkha. Where several aftershocks were still being felt, meanwhile another major aftershock hit Sindupalchowk district on 12th May, 2015.

Two or more than two storey low strength masonry structure constructed with mud mortar are mostly damaged and destroyed. These structure are predominate in the rural area of Nepal.
Under Housing reconstruction programme, in order to make the earthquake resistance buildings that are to be constructed, NRA has formulated a minimum requirements (MRs) based on the NBC 105. The MRs clearly stated that for the buildings with stone/brick masonry in mud mortar, the number of story is restricted to only one story if wooden band is used, whereas if RC band is used, allowable number of story is one story plus attic, based on structural analysis.

Nevertheless, the people tends to construct two story building to meet their living functional requirement. And other reason is people have felt risk of multi stotey building constructed with low strength masonry structure. Hence, they have built the upper story mostly with timber frame structure using the available materials such as CGI sheet on the masonry structure at ground floor.

Hybrid structure is huge demand in the reconstruction field..

Therefore, in order to ensure the safety of these building against earthquake load and wind load, it has become an urgent task to make the construction guideline along with proper connection details and standards of hybrid structures.
Hybrid structure (Mix structure) is the combination of two or more type of structural system that is generally constructed with different technology and materials in accordance with level of floor. The hybrid structure in this manual refer to such structures where the ground floor is constructed by masonry structure and the first floor by timber or steel frame structure with lightweight such as CGI sheet or wooden planks.
Current trend of hybrid structures
3. Limitation of this manual

Limitations

Under the GoN housing reconstruction programme, this manual covers only hybrid structure that are newly constructed or under construction.

This manual has certain limitations and is only relevant for buildings which are:

I. Residential and fall under category ‘C’ and ‘D’ of NBC.

- Category "A": Modern building to be built, based on the international state-of-the-art, also in pursuance of the building codes to be followed in developed countries.
- Category "B": Buildings with plinth area of more than One Thousand square feet, with more than three floors including the ground floor or with structural span of more than 4.5 meters.
- Category "C": Buildings with plinth area of up to One Thousand square feet, with up to three floors including the ground floor or with structural span of up to 4.5 meters.
- Category "D": Small houses, sheds made of baked or unbaked brick, stone, clay, bamboo, grass etc., except those set forth in clauses (a), (b) and (c)

Applicability

This manual is prepared on the basis of NBC105, NBC104 and IS 875. The designs mentioned in the manual are ready-to-use designs for all structural components.
This manual is intended to cover only those buildings that are constructed using load bearing masonry structures in ground floor and frame structure with light weight wall in first floor.
Construction methodology

The masonry structure at ground floor shall consist of all the earthquake resistant elements such as horizontal and vertical bands. R.C. or wood both can be used to construct these bands, but it shall be compliant with the respective minimum requirements.

The first floor shall be timber frame structure. Since, no any specific guidelines has been made till date, different construction technologies resulting from connection details to materials is used for construction of timber framed structures. Any construction details with reference to the provided specification shall be followed in first floor.

The first floor can be constructed with steel frame structure, but the strength of each structural items shall be equivalent to required strength mention in this manual.

Inspection methodology

Under reconstruction programme, if conditions of building are below, inspection shall be based on specification provided in this manual hence, structural calculation is not required.
1. Upto two storey, ground floor with masonry structure and first floor with timber structure.
2. First floor area shall not be more than ground floor area.
3. Height of building is less than 3m for ground floor and 2.5m for first floor.
 However, if upper storey has attic, structural calculation is mandatory.
Construction Sequence of hybrid structure

1. Install base plate as horizontal member above the floor band of the masonry wall. Properly, connect these base plate with the floor band using the appropriate connecting materials. Incase of wooden floor band if the size of main wooden member is as per the required size of base plate then base plate can be ignored, else install base plate above the wooden floor band.

2. Install vertical member at required spacing on base plate with proper connection. It shall be continuous from base plate to top plate.

3. Install bracing member at each corners of building symmetrically using required size and number.

4. Construct wooden trusses for roof by properly connecting it with the top plate.
The horizontal ground motion is similar to the effect of a horizontal force acting on the building, hence the term “Seismic Load” or “Lateral Load” is used. As the base of the building moves in an extremely complicated manner, inertia forces are created throughout the mass of the building and its contents. It is these reversible forces that cause the building to move and sustain damage or collapse.
Failure pattern 1:
If capacity of elements resisting against lateral loads is not enough, the building will be partially or totally collapsed.

Failure pattern 2:
If there is poor connection between the ground floor and first floor with rigid structure, the building might tend to uplifting/rocking or sliding behavior.
5. Timing of executing inspection

MASONRY STRUCTURE

The first inspection shall be done after completion of the construction up to plinth level. The appropriate inspection sheet according to the masonry typology mentioned in annex 10 in inspection guidelines shall be used during the inspection. If the structure is found to be compliant then it can be certified for receiving 2nd tranche, else the correction order shall be given using the forms provided in annex 11.

The second inspection shall be done after completion of the roof band of one story and the first floor of the multistory house, the beneficiaries should apply for the inspection of the house and third installment using the form provided in annex 6. Technical Inspection Team should use the form in Annex-13 to certify the house if the constructed house is according to earthquake resilient design and approved design. If correction has to be made, annex- 11 form shall be used by Technical assistance Team informing about the things to be correct.

The final inspection shall be done after completion of the roof. Technical Inspection Team should inspect and fill the form as specified in Annex-15 and if the constructed house is found to be as approved design and earthquake resilient then it is recommended for “House reconstruction completion certificate”
Inspection guidelines was publish by NRA under Earthquake affected building reconstruction Act, 2072 for inspection of under construction or constructed building under Housing reconstruction programme. It consist of the procedure of the grant distribution along with several numbers of inspection forms for various typology of the buildings that needs to be used during inspection of each individual buildings.

Inspection manual was prepared to make the inspection easy for masonry and RCC houses and systematic for safer , strong construction on the basis of Grant Distribution Guidelines 2015.
It consist of the procedure to inspect the houses to ensure the reconstructed building to be earthquake resistant and inspector can choose eligible house owner for receiving the subsidy.
5. Timing of executing inspection

HYBRID STRUCTURE

1st inspection

In order to carry out the first inspection of the hybrid structure, where the ground floor is constructed using load bearing masonry, the inspection shall be done on the basis of appropriate inspection forms (Annex 10) provided to inspect masonry building. Here, the structure shall be constructed on the basis of MRs. It shall be complaint to all the MRs or exceptional cases. If it is found to be non compliant correction order shall be given using the form provided in annex 11.

Timing for 1st inspection

Sample from for 1st Inspection
After completion of construction up to floor level, the 2nd inspection is carried out. Since, the ground floor is constructed using masonry structure, the forms that shall be used to inspect is same as the inspection forms used to inspect the masonry building (Annex 13).

Here, the super structure shall have all the earthquake resistant features and constructed on the basis of MRs. If it is found to be non compliant correction order shall be given using the form provided in annex 11.

The final inspection shall be done using the inspection form for hybrid structure. If all the description provided in the inspection sheet are found to be compliant then the building completion certificate (Annex 16) can be provided.
Scenario of construction/inspection

If second inspection of masonry structure is satisfied/compliant, upper structure as hybrid can be build. Upper structure have to follow specification provided in this manual.
When upper story is completed, the final inspection shall be done using the form for hybrid structure.
During the inspection of hybrid structures, the main structural part of first floor shall be inspected. Unless the projection of the building is within the MRs, the inspection of the verandah can be ignored. Since, this manual has been prepared on the basis of the MRs of masonry structures hence, if the projection (Verandah) in the first floor exceeds the MRs then the detail structural calculation shall be done separately to strengthen these areas.
PART-2: Technical Specification of Hybrid Structure

Key inspection items of hybrid structure

1. Shape and Size of building
2. Materials
3. Connections and Joints
4. Frame action
5. Roof
Key inspection items of hybrid structure

1. Shape and Size of building
2. Materials
3. Connections and Joints
4. Frame action (Vertical, Horizontal and bracing)
5. Roof
Key inspection items of hybrid structure

1. **Shape and Size of building**

 Simple rectangular shapes behave better in an earthquake than shapes with projections. The inertia forces are proportional to the mass (or weight) of the building and only building elements or contents that possess mass will give rise to seismic forces on the building.

2. **Materials**

 Inadequate materials does not have sufficient stability and strength to withstand the lateral forces. Hence, use of these substandard materials might leads to the failure or ultimately collapse of the overall structure.

3. **Connections and Joints**

 If there is poor connection between the ground floor and first floor with rigid structure, the building might tends to uplifting/rocking or sliding behavior, when the lateral load is imposed on to the structure.

4. **Frame (vertical, horizontal and bracing)**

 Earthquake-induced inertia forces will be distributed to wall consist of vertical, horizontal member and bracing. Therefore, frame should support each other horizontally and vertically.

 Wall framing should have diagonal braces, or sheathing boards so that the frame acts as a shear or bracing wall.

 Diagonal braces are used to resist the frame against lateral loads due to earthquake and wind.

5. **Roof**

 In order to resist against lateral forces, proper connection of roof to the vertical post and top plate shall be done. Depending upon the structures cross bracing is also required.
1. Shape and Size of building

Requirements

<table>
<thead>
<tr>
<th>No.</th>
<th>Category</th>
<th>Sub Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shape and Size of building</td>
<td>No. of storey</td>
<td>Not more than two storey</td>
</tr>
<tr>
<td></td>
<td>Shape of house, Span of wall</td>
<td>1st Floor</td>
<td>Regular shape. The wall line of upper storey shall be on the wall line of lower storey. The wall line shall not be cantilevered. Therefore, the span of wall shall be same as lower storey.</td>
</tr>
<tr>
<td></td>
<td>Height of wall</td>
<td>1st Floor</td>
<td>It shall not be more than 2.5m.</td>
</tr>
</tbody>
</table>

Why important?

No. of storey: The seismic load is distinctly different from dead load and live load. If attic is used as storage, heavy weight will be on the top of building, hence, larger seismic force will be subjected.

Shape and Size of building: Simple rectangular shapes behave better in an earthquake than shapes with projections. Torsional effects of ground motion are pronounced in long narrow rectangular blocks.

Exception

- If structure is found to be safe after structural calculation, two storey plus attic can be constructed by stone masonry with mud mortar in ground floor and timber in first floor.

Inspection methodology

- Upto two storey, inspection is specification base, however, if two storey plus attic, structural calculation is mandatory.
Shape of house, span of wall

- The wall line of upper storey shall be on the wall line of lower storey.
- The vertical member should rest on the load bearing wall of lower storey.
- The wall line shall not be cantilevered.
 → Therefore, the span of wall shall be same as lower storey.

Correlation measures

- Provide vertical, horizontal member and bracing with proper connection at proper location.
- Provide additional beam if the area of the room in ground floor exceeds the MRs of masonry.
2. Materials

Requirements

<table>
<thead>
<tr>
<th>No.</th>
<th>Category</th>
<th>Sub-category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Materials</td>
<td>Nail</td>
<td>Common wire nails shall be made of mild steel having a minimum tensile strength of 550N/mm². Nails with appropriate diameter and length shall be provided.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolt</td>
<td>It shall be used in such the number, diameter, length, spacing as each specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metal Plate</td>
<td>It shall be used in such the number, diameter, length, spacing as each specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rebar</td>
<td>High strength deformed bars with (f_y = 415 \text{ Mpa} / 500 \text{ Mpa}).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timber</td>
<td>Treated and well seasoned hard wood or locally available wood without knots shall be used.</td>
</tr>
</tbody>
</table>

Why important?

- Inadequate materials does not have sufficient stability and strength to withstand the lateral forces. Hence, use of these substandard materials might leads to the failure or ultimately collapse of the overall structure.
- Moisture can cause wooden surfaces to swell and deform. Excessive moisture will lead the wood to decay, caused by decay fungi that ruin the material completely.
- Shrinkage of wood on drying is relatively large. Joint loosen easily due to contraction in the direction perpendicular to fibers. Therefore dry wood shall be used with moisture content less than 20 %.
- Wood can decay from repeated change of moistures. Therefore seasoned wood should be used in construction.

Inspection methodology

It can be checked by the observation and measurement.
2.1 Nail

- The things that need to be checked in nail are as follows:
 a) Nails diameter:
 Nail diameter shall be in between $\frac{1}{11}$ and $\frac{1}{6}$ of the least thickest of the members to be connected.
 b) Nails length:
 The length of a nail shall be at least 2.5 times the thickness of the thinnest member and it shall penetrate the thicker member by 1.5 times the thickness of the thinner member, whichever is further.
 c) Number of nails:
 The number of nails in a group should not exceed 10 in one rows in the direction of the force.

2.2 Bolts:

- When a number of bolts are used in a joint, the allowable load in withdrawal or lateral resistance shall be the sum of the allowable loads for the individual bolts.

2.3 Metal Plate:

- The bolts shall be arranged in such the size, thickness, spacing as each design/specification.

2.4 Rebar:

- Heavily rusted rebar should not be used.
- After rubbing the steel bar, if stain is present on fingers, but if the flakes doesn’t come off then the rust is acceptable.
- The thickness of rebar is checked by using vernier caliper. Ductility of rebar can be checked by bending it at 90° and if small cracks are found ductility is insufficient.
2.1 Wood

Exception

Tolerances:
• Permissible tolerances in measurements of cut sizes of structural timber shall be as follows:
 a) For width and thickness:
 1) Up to and including 100mm +3mm -0mm
 2) Above 100mm +6mm -3mm
 b) For length: +10mm -0mm

Inspection methodology

• Timber treatment can be identified by the observation or questionnaires survey with the house owner and mason.
• Typology of the wood can be identified by observation and field test.
• Defects in timber can be identified by observation.
• Moisture content in the timber can be identified by oven-dry method.

Wood can readily be identified as a hardwood or softwood by the following procedure:
• The color of hardwood is dark brown and light brown in softwood.
• When the thumb nail is pressed against hardwood it will not leave a mark but when it is pressed in softwood and pull it along a surface it leaves a scratch mark. Deeper the mark, the softer the wood.

Source: http://www.instructables.com/id/Hard-Wood-or-Soft-Wood%3F/
Technical specification

Table: List of Hardwood and softwood

<table>
<thead>
<tr>
<th>HARD WOOD</th>
<th>SOFT WOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Babul</td>
<td>Mesua</td>
</tr>
<tr>
<td>Blacksiris</td>
<td>Oak</td>
</tr>
<tr>
<td>Dhaman</td>
<td>Sain</td>
</tr>
<tr>
<td>Indian Rose Wood</td>
<td>Sal</td>
</tr>
<tr>
<td>Jaman</td>
<td>Sandan</td>
</tr>
<tr>
<td>Sissao</td>
<td>Teak</td>
</tr>
<tr>
<td>Khair</td>
<td></td>
</tr>
<tr>
<td>SAL (AGRAKH)</td>
<td>56</td>
</tr>
<tr>
<td>SISAU</td>
<td>50</td>
</tr>
<tr>
<td>KHOTE SALLA</td>
<td>33</td>
</tr>
<tr>
<td>GOBRE SALLA</td>
<td>32</td>
</tr>
<tr>
<td>UTTIS (RED)</td>
<td>36</td>
</tr>
<tr>
<td>UTTIS (WHITE)</td>
<td>34</td>
</tr>
<tr>
<td>CHAMP</td>
<td>33</td>
</tr>
<tr>
<td>SATISAL</td>
<td>38</td>
</tr>
<tr>
<td>ASNA</td>
<td>46</td>
</tr>
<tr>
<td>PHALAT</td>
<td>60</td>
</tr>
<tr>
<td>TOONI</td>
<td>37</td>
</tr>
<tr>
<td>SEMAL</td>
<td>25</td>
</tr>
<tr>
<td>OKHAR</td>
<td>45</td>
</tr>
<tr>
<td>OAK</td>
<td>64</td>
</tr>
<tr>
<td>KAIR</td>
<td>60</td>
</tr>
<tr>
<td>BIJASAL</td>
<td>49</td>
</tr>
</tbody>
</table>

Source: NBC 203:2015

Table: Unit of weight of wood

<table>
<thead>
<tr>
<th>S.N</th>
<th>Kinds of wood</th>
<th>Weight (12% moisture content) lb/cft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SAL (AGRAKH)</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>SISAU</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>KHOTE SALLA</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>GOBRE SALLA</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>UTTIS (RED)</td>
<td>36</td>
</tr>
<tr>
<td>6</td>
<td>UTTIS (WHITE)</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>CHAMP</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>SATISAL</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>ASNA</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>PHALAT</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>TOONI</td>
<td>37</td>
</tr>
<tr>
<td>12</td>
<td>SEMAL</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>OKHAR</td>
<td>45</td>
</tr>
<tr>
<td>14</td>
<td>OAK</td>
<td>64</td>
</tr>
<tr>
<td>15</td>
<td>KAIR</td>
<td>60</td>
</tr>
<tr>
<td>16</td>
<td>BIJASAL</td>
<td>49</td>
</tr>
</tbody>
</table>

Source: NBC 112:1994

• Timber treatment
 It can be treated by using coal tar or any other preservative that prevent timber from being decayed and attacked by insects.

• Moisture content in Timber:
 Moisture content means the weight of water contained in wood, expressed as a percentage of its oven dry weight. It can be determined by the oven-dry method.

Defects in Timber:

• Dead Knot: It is the knot in which the layers of annual growth are not completely intergrown with those of the adjacent wood. It is surrounded by pitch or bark. The encasement may be partial or complete.

Why important?

Connections between lower and upper structure

- If there is poor connection between the ground floor and first floor with rigid structure, the building might tend to uplifting/rocking or sliding behavior, when the lateral load is imposed on to the structure.
- Bonding strength of stone masonry in mud mortar with wooden band is very poor, therefore, failure pattern mentioned above will occur easily.

Joints of structural member

- The failure of the joints connecting structural member such as vertical, horizontal and bracing frequently occurs. Structural member should be uniform, so that the frame will acts as earthquake resistance elements.

<table>
<thead>
<tr>
<th>No.</th>
<th>Category</th>
<th>Sub-category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Connections and joints</td>
<td>Connections between lower and upper structure</td>
<td>It shall be properly connected as per the specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joints of structural member</td>
<td>All the structural members shall be properly connected by nails, bolts and metal plate as per the specification.</td>
</tr>
</tbody>
</table>
Connections between lower and upper structure

In case of floor band is made by **Reinforcement Concrete**

Construction methods are from P34

In case of stone masonry in **mud mortar with wooden band**

Construction methods are from P38
Connections between RC band and wooden base plate

In case of floor band is made by Reinforcement Concrete.

Option 1: Connecting by anchor bolt

Anchor bolts: Minimum diameter is 12mm (M12) and length 250mm with plate 40mm x 40mm x 4.5mm.

Connecting wooden base plate and RC floor bands by anchor bolts. The anchor bolt are installed at the maximum spacing is 2.0 meter.
Connections between RC band and wooden base plate

In case of floor band is made by Reinforcement Concrete.

Option 2: Connecting by anchoring rebar

Connecting base plate and floor bands by Rebar.

Steps
- Anchor rebar in RC band
- Bend rebar for tying

Option 3: Tying by GI wire

Rebar / GI wire: Tie RC band and base plate together
Technical specification

Connections between RC band and wooden base plate

In case of floor band is made by **Reinforcement Concrete**.

New construction/Correction measures

Option 4: from Retrofitting manual.
Connection fixed by anchor plate for existing building

3 mm thick Height and depth: 45mm x 45mm, M12 of 4 number, M16 of one number in each face @ 3.00 mat centres

Details of Anchor plate
Connections between RC band and wooden base plate

In case of floor band is made by Reinforcement Concrete.

New construction/Correction measures

Option 5: from Retrofitting manual.
Connection fixed by metal strap at side of wall
Connections between wooden band and base plate

In case of Stone masonry in mud mortar with wooden band

Option 1: Continuous vertical member

The vertical member is continuous from ground floor to 1st floor.

Option 2: Connecting roof and lintel wooden band

Wooden floor band and lintel band should be connected.
Option 3: Extending CGI sheet to lintel band

CGI sheet is extended to lintel band fixed by nail properly.
Google Chrome cannot read this document.
Technical specification

Connections between wooden band and base plate

In case of Stone masonry in mud mortar with wooden band

New construction/Correction measures

Option 2-2: Connecting wooden lintel band and lintel band with GI wire

Steps:
1. Insert and tie the GI wire 3.25mm (10 Gauge) at the spacing of 450mm c/c. starting from lintel to the floor band through out the wall.
Connections between lower and upper structure

In case of RC floor band

- Base plate: 100mm x 75mm
- 75mm x 38mm main member
- 50mm x 38mm batten

Wooden base plate should connect to RC floor band

In case of wooden floor band

- If wooden band is minimum size, addition of base plate is needed.
 - 50mm x 38mm batten
 - 100mm x 75mm main member

Use of larger horizontal member in floor band as per requirement of base plate

Construction detail
Connections between base plate and vertical member

Wooden vertical member should be properly connected to horizontal member as shown in figure.

Detail A: Connection of corner

Detail B: Connection horizontal and vertical at middle
Connections between top plate, vertical and bracing member

Detail B: Connection horizontal and vertical at middle

‘T’ shape metal plate

‘V’ shape metal plate

12mm dia steel hook

Detail of metal plate
Wooden vertical member should be properly connected to horizontal member as shown in figure.

Detail A: Connection of corner

Connected by metal plate

Connected by metal plate

Connected by nail

Nail: length 75mm x 5

Joint between braces

It should be fixed by nail
Nail: length 75mm x 4
Technical specification

Joint of timber member

Detail of metal plates

<table>
<thead>
<tr>
<th>Items</th>
<th>Detail</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>T shape</td>
<td>![T shape diagram]</td>
<td>Connections between base plate and vertical member</td>
</tr>
<tr>
<td>L-shape</td>
<td>![L-shape diagram]</td>
<td>Connections between top plate and vertical member</td>
</tr>
<tr>
<td>V-shape</td>
<td>![V-shape diagram]</td>
<td>Connections between horizontal, vertical and bracing member</td>
</tr>
</tbody>
</table>

| Metal plate 1 | ![Metal plate 1 diagram] | Connections between horizontal, vertical and bracing member |
| Metal plate 2 | ![Metal plate 2 diagram] | Connections between horizontal, vertical and bracing member |

Note: Instead of metal plate, three layers of 0.55mm GI sheet can be used.

The length of a nail shall be at least 2.5 times the thickness of the thinnest member and it shall penetrate the thicker member by 1.5 times the thickness of the thinner member, whichever is further.
Joint of timber member

Metal plate for connection between horizontal and vertical member

Inspection procedure

The detail of connection that needs to be checked are:

- Connection between wooden member.
- Connection between wall plate and floor band.
- Connection of braces with the vertical and horizontal member (base and Top plate).
- Connection between wooden lintel and floor band.
4. Frame action (Vertical, Horizontal and Bracing member)

Requirements

<table>
<thead>
<tr>
<th>No.</th>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical member</td>
<td>It shall be continue from base plate to top plate.</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>It shall be more than 75x75(mm) in hard wood, 100x75(mm) in soft wood.</td>
<td></td>
</tr>
<tr>
<td>Spacing</td>
<td>It shall be less than 1200mm.</td>
<td></td>
</tr>
<tr>
<td>Horizontal member</td>
<td>It shall be continuous at same level.</td>
<td></td>
</tr>
<tr>
<td>Base plate/ Top plate</td>
<td>It shall be more than 75x75(mm) in hard wood, 100x75(mm) in soft wood.</td>
<td></td>
</tr>
<tr>
<td>Bracing</td>
<td>It shall be symmetrical and located at each corners.</td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td>It shall not be in same direction.</td>
<td></td>
</tr>
<tr>
<td>Size/number</td>
<td>It shall be as per the specification.</td>
<td></td>
</tr>
</tbody>
</table>

Exception

- Steel can be used instead of wood, but its strength shall be equivalent to the required strength of wood.
- If structure is found to be safe after structural calculation.
- Size of vertical and horizontal member can be variable depending upon the span. Refer to NBC 203 and 204.
- If the size of main wooden member in floor band is as per the required size of base plate, then base plate can be ignored.
- roof band is using as per requirements of base plate, base plate can be ignored.

Why important?

Earthquake-induced inertia forces will be distributed to wall consist of vertical, horizontal member and bracing. Therefore, frame should be supported horizontally and vertically. Wall framing should have diagonal braces, or sheathing boards so that the frame acts as a shear or bracing wall.

Diagonal bracing is main element to resist the frame against lateral loads due to earthquake and wind.
Technical specification

Fundamental items

1. Vertical, horizontal member and bracing shall be properly connected.
2. Vertical member shall continue from base to top plate.
3. The spacing of vertical member shall be appropriate.
4. Horizontal member shall be continuous at same level.
5. Bracing shall be symmetrical and located at each corners.
6. Bracing shall be properly connected and provided from base to top plate.

Correction measures
Technical specification

Vertical and Horizontal member

1. Standard type: Lower structure is minimum requirement

- Top plate shall be at same level
- Vertical member shall be continuous from base to top plate.
- Around 1200mm is recommended

Correction measures

Strengthen gap of top plate. Adding horizontal/vertical member with proper connection.
Technical specification

Vertical and Horizontal member

2. Traditional type: Lower structure is exceptional of minimum requirement

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>STOREY</th>
<th>COLUMN SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2m</td>
<td>2.5m</td>
</tr>
<tr>
<td>Hard Wood</td>
<td>Ground</td>
<td>110x110</td>
</tr>
<tr>
<td></td>
<td>1st</td>
<td>90x90</td>
</tr>
<tr>
<td>Soft Wood</td>
<td>Ground</td>
<td>120x120</td>
</tr>
<tr>
<td></td>
<td>1st</td>
<td>90x90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2m</td>
</tr>
<tr>
<td>Hard Wood</td>
<td>190</td>
</tr>
<tr>
<td>Soft Wood</td>
<td>230</td>
</tr>
</tbody>
</table>

*The minimum dimensions of vertical members for different span shall be as tabulated in Table. For hybrid structure, if span of vertical member is less than 1200mm, its size is 75x75(mm) in hard wood, 100x75(mm) in soft wood.
Diagonal bracing shall be located at each corner. In case of unbalanced bracing the center of gravity will be shifted and the structure will be subjected to torsion.
Bracing shall be continuous base plate to top plate.

Direction

It shall not be in same direction.

To achieve the adequate seismic resistance, provide diagonal bracing members in the planes of walls starting from base to top plate as shown in fig.

Balanced bracing

Same direction of bracing.
It shall be balanced.

Bracing shall be continuous base plate to top plate.
Diagonal bracing is main element to resist the frame against lateral loads due to earthquake and wind. Size and number of bracing should be consider at each X and Y direction.
Under the following condition, inspection on the basis of specification is enabled.

- Area of building is less than 50 sq m.
- Upto 2 storey without attic.
- Wall height of first floor is less than 2.5m
- Using light weight material for roof and wall.
- And all other requirements of each item are fulfilled.

Specification base. Inspection shall be as per the specification.

Size and Number of bracing member

- Size: 100x50 double
- Span: minimum 1m
- Located at each corner on X and Y direction
Technical specification

Bracing member

Size and Number of bracing member

Specification base. Inspection shall be as per the specification.

Under the following condition, inspection on the basis of specification is enabled.

- Area of building is less than 50 sq m.
- Upto 2 storey without attic.
- Wall height of first floor is less than 2.5m
- Using light weight material for roof and wall.
- And all other requirements of each item are fulfilled.

<table>
<thead>
<tr>
<th>Wooden Brace fixed by nail</th>
<th>Size</th>
<th>100 x 50 mm</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>length</td>
<td>Minimum: 1 meter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of each direction (X and Y)</td>
<td>4 (Located at each corner)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calculation</td>
<td>100x50: unit strength 2.6kN/m 2.6 x 2 (double) x 1 (meter) x 4 = 20.8kN</td>
<td></td>
</tr>
</tbody>
</table>

If the materials and size of the bracing members vary then the simplified calculation shall be done using the shear strength provided in next page.
Technical specification

Bracing member

<table>
<thead>
<tr>
<th>Method of Bracing/ wall construction</th>
<th>Shear Strength of Unit wall (kN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No brace</td>
<td>0.0</td>
</tr>
<tr>
<td>Mud wall</td>
<td></td>
</tr>
<tr>
<td>Thickness less than 50mm</td>
<td>1.5</td>
</tr>
<tr>
<td>Thickness 50mm~70mm</td>
<td>1.8</td>
</tr>
<tr>
<td>Thickness 70mm~90mm</td>
<td>2.2</td>
</tr>
<tr>
<td>Thickness more than 90mm</td>
<td>2.5</td>
</tr>
<tr>
<td>Brace rebar Φ9</td>
<td>1.6</td>
</tr>
<tr>
<td>Wooden Brace</td>
<td></td>
</tr>
<tr>
<td>Single brace</td>
<td></td>
</tr>
<tr>
<td>90mm*15mm Nail</td>
<td>1.6</td>
</tr>
<tr>
<td>90mm*30mm Steel Plate</td>
<td>2.4</td>
</tr>
<tr>
<td>90mm*45mm Steel Plate</td>
<td>3.2</td>
</tr>
<tr>
<td>90mm*90mm Steel Plate</td>
<td>4.8</td>
</tr>
<tr>
<td>Double brace</td>
<td></td>
</tr>
<tr>
<td>Wooden plank wall</td>
<td>0.8</td>
</tr>
<tr>
<td>Structural Plywood</td>
<td></td>
</tr>
<tr>
<td>12mm</td>
<td>5.2</td>
</tr>
<tr>
<td>Gypsum Board</td>
<td></td>
</tr>
<tr>
<td>9mm</td>
<td>1.1</td>
</tr>
<tr>
<td>Plywood</td>
<td></td>
</tr>
<tr>
<td>3mm</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Fundamental case: Wooden brace 100x50(double) fixed by nail:

\[
2.6kN/m(\text{unit strength}) \times 2 \text{ (double)} \times 1.0(\text{meter}) \times 4 = 20.8kN
\]

Option 1: Wooden brace 100 x 100(single) fixed by steel plate:

\[
4.8kN/m(\text{unit strength}) \times 1 \text{ (single)} \times 1.2(\text{meter}) \times 4 = 23.04kN > 20.8kN \quad \text{OK}
\]

Option 2: Brace rebar Φ9 (double and 2pieces)

\[
1.6kN/m(\text{unit strength}) \times 2(\text{pieces}) \times 2(\text{double}) \times 1.0(\text{meter}) \times 4 = 25.6kN > 20.8kN \quad \text{OK}
\]
Simplified calculation of bracing member

CONCEPT

\[\frac{Q_u}{V_u} \geq 1.0 \]

Ultimate lateral strength of house shall be larger than required seismic load from code

- **Vu**: Calculation of SEISMIC LOAD
 - Required Seismic force following NBC105
 - \[V = C_d \cdot W_t \]
 - \[C_d = C \cdot Z \cdot I \cdot K \]

- **Qu**: Ultimate lateral strength of house
 - Wall ratio of each direction (Ground floor and First floor)

Required seismic load from NBC105

10.1 **Horizontal Seismic Base Shear**

10.1.1 The horizontal seismic shear force acting at the base of the structure, in the direction being considered, shall be:

\[V = C_d \cdot W_t \]

where \(C_d \) is as defined in 8.1.1.

8.1 **Design Spectra and Lateral Force Coefficients**

8.1.1 **Design Horizontal Seismic Coefficient for the Seismic Coefficient Method**

The design horizontal seismic force coefficient, \(C_d \) shall be taken as:

\[C_d = CZIK \]

Where \(C \) is the basic seismic coefficient for the fundamental translational period in the direction under consideration.
Calculation base

<table>
<thead>
<tr>
<th>Calculation Coefficient</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C: Basic seismic coefficient</td>
<td>0.08</td>
</tr>
<tr>
<td>Z: Zone factor</td>
<td>1</td>
</tr>
<tr>
<td>I: Importance factor</td>
<td>1</td>
</tr>
<tr>
<td>K: Structural performance factor</td>
<td>2.5</td>
</tr>
</tbody>
</table>

\[
Cd = CZIK = (0.08 \times 1 \times 2.5) masonry structure = 0.2 masonry structure
\]

SEISMIC LOAD

<table>
<thead>
<tr>
<th>Area</th>
<th>Unit weight (kN/sqm)</th>
<th>Floor (if attic is there)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>Heavy: 2.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Light: 0.79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area: 8</td>
<td>kN</td>
</tr>
<tr>
<td></td>
<td>Sub total: 8</td>
<td>kN</td>
</tr>
<tr>
<td>Wall</td>
<td>Heavy: 2.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Light: 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volume: 0.5</td>
<td>kN</td>
</tr>
<tr>
<td></td>
<td>Thickness: 0.5</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>Sub total: 4</td>
<td>kN</td>
</tr>
<tr>
<td>Floor (if attic is there)</td>
<td>Heavy: 2.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Light: 0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Area: 8</td>
<td>sqm</td>
</tr>
<tr>
<td></td>
<td>Sub total: 8</td>
<td>kN</td>
</tr>
</tbody>
</table>

Total WT. = 0.2 + 8 + 8 = 16 kN

Seismic load = Cd x WT

Bracing member

<table>
<thead>
<tr>
<th>Type</th>
<th>Size and Number of bracing member</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-direction</td>
<td>Refer from table no. 1</td>
</tr>
<tr>
<td>Y-direction</td>
<td>Refer from table</td>
</tr>
</tbody>
</table>

Allowable strength

<table>
<thead>
<tr>
<th>Type</th>
<th>Allowable strength of each direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-direction</td>
<td>Refer from table</td>
</tr>
<tr>
<td>Y-direction</td>
<td>Refer from table</td>
</tr>
</tbody>
</table>

Allowable strength of each direction 6 and 12 should be bigger than seismic load 18
Technical specification

Bracing member

Size and Number of bracing member

Wooden bracing member

- **Single brace**
 - Wooden bracing member
 - If wooden brace 100 x 100 (single) fixed by metal plate:
 - Shear strength: $4.8\text{kN/m (unit strength)} \times 1\text{(single)} \times 1.2\text{(meter)} = 5.76\text{kN}$

- **Double brace**
 - Wooden bracing member
 - If wooden brace 100 x 50 (double) fixed by metal plate:
 - Shear strength: $3.2\text{kN/m (unit strength)} \times 2\text{(double)} \times 1.2\text{(meter)} = 7.68\text{kN}$

Rebar bracing member

- **Double brace**
 - 1 – 12mm dia rebar
 - If 1-12mm dia. Rebar:
 - Shear strength: $1.6\text{kN/m (unit strength)} \times 2\text{(double)} \times 1.2\text{(meter)} = 3.84\text{kN}$

 - Instead of 12mm dia. 2 number of 8mm dia. also can be used.
Technical specification

Bracing member

Size and Number of bracing member

Correction measures

No bracing member.

Steps
1. Add diagonal bracing
2. Connect vertical, horizontal member and bracing by proper connection materials such as metal plate.
5. Roof

Requirements

<table>
<thead>
<tr>
<th>No</th>
<th>Category</th>
<th>Material</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Roof</td>
<td>Wood</td>
<td>Use of light roof</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All member shall be properly connected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bracing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For flexible diaphragm, diagonal bracing shall be considered.</td>
</tr>
</tbody>
</table>

Why important?

- If heavy weight is on the top of building it will be subjected to larger seismic force. Therefore, Light weight roof is required.
- The joints of wooden roof trusses need to be bolted together and tied with metal straps as it will provides flexibility and prevent from collapse.
- In order to resist lateral forces, depending upon the structures of roof, it might be need cross bracing at all levels. It provides strength against lateral forces so that the building does not collapse sideways but is held together.

Exception

- If structure is found to be safe after structural calculation.

Inspection methodology

- The size of the main wooden member, batten can be identified by measurement.
- The spacing of the batten can also checked by the measurement whereas the connection can be checked by the observation.
Fundamental items

1. Use a continuous wall plate, ridge and purlins to tie the rafters or trusses together.
2. Stiffening of roof
 - Diagonal straps with steel nut bolts or metal nails
 - Diagonal steel truss with steel nut bolts or metal nails
 - Timber bracing with metal nails or timber nails

Wooden Roof truss
A **timber roof truss** is a structural framework of timbers designed to bridge the space above a room and to provide support for a roof. Trusses usually occur at regular intervals, linked by longitudinal timbers such as purlins. Rafters are inclined timbers fixed between wall plate and ridge which transmit live and dead loads to wall plate.

Connection details

Detail A: Joints of Wooden Truss

Detail B: Joints of Wooden Truss

Detail C: Joints of Rafter
Technical specification

Strengthening roof

In case of Roof/floor bracing missing

Correction measures

- Option: from Retrofitting manual.
 - Provide X-bracing at end bays on each sloppy side
 - Provide additional roof/floor member as needed
Technical specification

Strengthening roof

Connection improvement between wall to roof

Correction measures

Option: from Retrofitting manual.

• Metal Strap with Screws

Note: 3 mmm thick metal strap, Minimum four numbers of 50 mm long nails (Fe250) with Floor member and Minimum four numbers of M16 grade expansion bolts with walling material.

Details of Anchor plate
Technical specification

Strengthening roof

Sliding of Roofing materials

Correction measures

Option: from Retrofitting manual. Fixing roofing tile.

1. Replace damaged tiles.
2. Using appropriate correct fixing method for roofing materials.
3. Connect the roof with the roof band by inserting reinforcement or GI sheet.
4. Slatestone and clay tiles should be properly anchored to purlin as NBC.

Detail of anchoring slate stone
Source: NBC203 2015, P44

Detail of fixing clay tile
Source: NBC203 2015, P45

L-hooks

Gently lift the overlapping tile and twist loose the damaged tile. After filling any nail holes, slip in a new tile and secure with an L-hooks (left) or bent copper wire (right).
APPENDIX

1. Inspection sheet
2. Prototype drawings
3. Structural Calculation
4. Structural Analysis
Final Inspection of Hybrid Structure

Government of Nepal
Ministry of Urban Development
Central Level Project Implementation Unit

Inspection Sheet of Hybrid Structure for Final Inspection

Information of House Owner/Beneficiary
- **Name:**
- **Address:**
 - District:
 - VDC/Municipality:
 - Ward:
 - Toll:
 - Land plot No:
- **Date of Inspection:**
- **Grand Agreement No.:**

Section 1: Description Provided in the Application to Survey the House

- If free design by house owner:
- Technique and Construction material:
- Construction of roof and materials:
- Technical Assistant:
 - YES,
 - NO
- Organization:
 - GoN,
 - NGO ():
- Trained Masons used:
 - YES,
 - NO
- Soil type:
 - Hard,
 - Medium,
 - Soft

Section 2: Detail Technical Inspection

<table>
<thead>
<tr>
<th>S.N</th>
<th>Category</th>
<th>Description</th>
<th>Comply</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Shape of House</td>
<td>No. of storey: Not more than two storey</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shape of house/Span of wall: 1st floor: Regular shape. The wall line of upper</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>storey shall be on the wall of lower storey. The wall line shall not be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>cantilevered. Therefore, the span of wall also same as lower storey.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height of wall: 1st floor: It shall not be more than 2.5m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Materials</td>
<td>Nail: Common wire nails shall be made of mild steel having a minimum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tensile strength of 550N/mm². Nails with appropriate diameter and length</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>shall be provided.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolt: The number, diameter, length and spacing shall be as per the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>specification. (*Refer hybrid manual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metal plate: The number, diameter, length and spacing shall be as per the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>specification. (*Refer hybrid manual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rebar: High strength deformed bars with fy = 415 Mpa /500 Mpa.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timber: Treated and well seasoned hard wood or locally available wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>without knots shall be used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Connection and Joints</td>
<td>Connection between lower and upper structure: It shall be properly connected</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>as per the specification. (*Refer hybrid manual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In SMM or BMM with timber band, the floor band and lintel band shall be</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>properly connected.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Joints of structural member: All the structural members shall be properly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>connected by nails, bolts and metal plate as per the specification.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(*Refer hybrid manual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Frame</td>
<td>Vertical member: It shall be continuous from base plate to top plate with</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>proper connection.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Size: It shall not be less than 75X75(mm) for hard wood and 100 X 75(mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>for soft wood.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spacing: It shall be less than 1200mm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Horizontal member: It shall be continuous at same level.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Base plate/Top plate: It shall be (100 X 75)mm.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>It shall be properly connected with floor band.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>It shall not be less than 75X 75 mm in hard wood and 100 X 75(mm) in soft</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>wood.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bracing member: Location: It shall be symmetrical and located at each</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>corners.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Others:

a) At least four number of photographs with their number
b) Tentative drawings of building:
c) After the detail description of the under constructed house, is it satisfactory to give completion certificate

 Yes ☐ , No ☐

☐ It was passed through the inspection of the third inspection so the construction can be provided building completion certificate from VDC/Municipality.

donoted to be corrected/retrofitted so correction order is given using Annex-6
d) Acceptance of Description provided agreeing that the technical details during inspection is correct:

 House owner/Beneficiaries or representative name:...............................Signature:..............................

 Relationship with house owner (In case of representative):..................Date:.................................

e) Submit for Approval of the technical inspection:.................................

 MOUD-DLPIU Supervisor:...

 Name:...Designation:...

 Signature...Date:...

f) Approved by:

 MOUD DLPIU Supervision Engineer...

 Designation:...

 Signature...Date:...
Prototype of hybrid structure
Prototype of hybrid structure
APPENDIX: Prototype of hybrid structure

Prototype of hybrid structure

SECTION AT-A-A

Nepal Housing Reconstruction Programme

DRAWING TITLE: SECTION

TYPE OF HOUSE: PROTOTYPE OF HYBRID STRUCTURE

SCALE: None

DATE: 4/4

DESIGNED BY: JICA
Structural calculation

Outline

\[\frac{Qu}{Vu} \geq 1.0 \]

Ultimate lateral strength of house shall be larger than required seismic load from code

\textbf{Vu: Calculation of SEISMIC LOAD}

Required Seismic force following NBC105

\[V = C_d \times W_t \]

- Dead load
- Live load
- Wind load
- Snow load

\textbf{Qu: Ultimate lateral strength of house}

- Wall ratio of each direction (Ground floor and First floor)

Stiffness eccentricity ratio

Lateral stiffness ratio

Joint/Connection

END
Appendix: Wall Ratio Calculation

Step 1: Checking Seismic Load

<table>
<thead>
<tr>
<th>Structure Type</th>
<th>1st Floor</th>
<th>2nd Floor</th>
<th>Attic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid Structure (JICA Model)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area of wall on each direction</td>
<td>Combination Load</td>
<td>Allowable Strength</td>
<td></td>
</tr>
</tbody>
</table>

Step 2: Wall Ratio Calculation

- **G.F. (Ground Floor)**: Timber + SMM + Wooden band
- **1st Floor**: Timber Frame
- **Attic**: Timber Frame + Wooden band

<table>
<thead>
<tr>
<th>Floor</th>
<th>X-Direction</th>
<th>Y-Direction</th>
<th>X-Direction</th>
<th>Y-Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.F.</td>
<td>283.2 kN</td>
<td>438.72 kN</td>
<td>20.8 kN</td>
<td>13.71 kN</td>
</tr>
<tr>
<td>Attic</td>
<td>283.2 kN</td>
<td>438.72 kN</td>
<td>20.8 kN</td>
<td>13.71 kN</td>
</tr>
</tbody>
</table>

Load Combinations:
- **SEISMIC LOAD**
- **HYBRID STRUCTURE**

<table>
<thead>
<tr>
<th>Combination</th>
<th>Load</th>
<th>Allowable Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.F.</td>
<td>283.2 kN</td>
<td>20.8 kN</td>
</tr>
<tr>
<td>Attic</td>
<td>283.2 kN</td>
<td>20.8 kN</td>
</tr>
<tr>
<td>TOTAL WT.</td>
<td>585.07 kN</td>
<td>40.07 kN</td>
</tr>
</tbody>
</table>

Allowable Strength Calculations

- **G.F.**: (2950000 * 0.096) / 1000 = 283.2 kN
- **Attic**: (4570000 * 0.096) / 1000 = 438.72 kN

Other Calculations

- **Allowable Bracing Strength**
 - **Ground Floor**: 20.8 kN
 - **Attic**: 20.8 kN

Bracing

- **Ground Floor**: (K100 = 20.8 kN)
- **Attic**: (K100 = 20.8 kN)

Notes:

- OK: Load ≤ Allowable
- NG: Load > Allowable

Diagram:

1. Hybrid structure model
2. Load distribution
3. Wall ratio calculation

Appendix: Wall Ratio Calculation

- **ONE STOREY + ATTIC**
- **TWO STOREY + ATTIC**
- **HYBRID STRUCTURE**
 - **G.F.**: Timber + SMM + Wooden band
 - **1st Floor**: Timber Frame
 - **Attic**: Timber Frame + Wooden band

Tables and Formulas

- **Floor Area**: 0.9m x 1.35m x 6.8m x 4.65m
- **Combination Load**: 585.07 kN
- **Allowable Strength**: 40.07 kN

Conclusion:

- Walls satisfy the allowable strength criteria for both load directions.
APPENDIX: Wall ratio calculation

TWO STOREY

- **GL:** SMM+Wooden band, **1F:** Timber frame
- **Floor Area:** 6.3m\(\times\)5.4 = 34.02\(\text{m}^2\)
- **Wall thickness:** 0.45m, **Height:** GL=3.0m, 1st= 2.5m

STEP 1: CHECKING SEISMIC LOAD

HYBRID STRUCTURE (NSET MODEL)

<table>
<thead>
<tr>
<th>Area of wall on each direction</th>
<th>1st floor</th>
<th>Ground floor</th>
<th>Roof</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-direction</td>
<td>L= 12.6 m A= 1.276(\text{m}^2)</td>
<td>L=10.8m A= 1.08 (\text{m}^2)</td>
<td>0.79 (\text{KN/m}^2) (\times) 8.4m (\times) 7.5m = 49.77 (\text{kN})</td>
</tr>
<tr>
<td>Y-direction</td>
<td>L= 8.73m, A= 3.92(\text{m}^2)</td>
<td>L=7.74m, A=3.48(\text{m}^2)</td>
<td>2.52 (\text{KN/m}^2) (\times) 6.3m (\times) 5.4m = 86.07 (\text{kN})</td>
</tr>
</tbody>
</table>

TOTAL WT. (WT of 1st)

- **G.F.** 753.30 \(\text{kN}\) (81.72 \(\text{kN}\))
- **1st Floor** 753.30 \(\text{kN}\) (81.72 \(\text{kN}\))
- **Wall** 9.35 \(\text{KN/m}^2\) \(\times\) \(\{5.85 \text{m} \times 2 + 4.95 \times 2\} \times 3.0 - (0.9m \times 1.35) \times 3 - (0.9m \times 2.1m)\} = 585.51 \(\text{kN}\)

Design method

<table>
<thead>
<tr>
<th>SEISMIC LOAD</th>
<th>Working Stress method</th>
<th>Limit state method</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.F.</td>
<td>(V=753.30 \times 0.32=241.06 \text{kN})</td>
<td>(V=941.63 \text{kn} \times 0.32=301.32 \text{kN})</td>
</tr>
<tr>
<td>F.F.</td>
<td>(V=81.72 \times 0.2 \times 1.2=19.61 \text{kN})</td>
<td>(V=102.15 \times 0.2 \times 1.2=24.51 \text{kN})</td>
</tr>
</tbody>
</table>

STEP 2: BRACING

- **Brace (X:100*50) = 2.6*2*4**
 - 20.8 \(\text{kN} \) > 19.61 \(\text{kN}\) ⇒ OK
- **Brace (X:100*50) = 2.6*2*4**
 - 20.8 \(\text{kN} \) > 19.61 \(\text{kN}\) ⇒ OK

STEP 3: WORKING STRESS

- **Ground floor**
 - X-direction: (3920000*0.096)/1000 = 376.32 \(\text{kN} > 241.06 \text{kN}\) ⇒ OK
 - Y-direction: (3480000*0.096)/1000 = 334.08 \(\text{kN} > 241.06 \text{kN}\) ⇒ OK

- **1st Floor**
 - X-direction: Brace (X:100*50) = 2.6*2*4
 - 20.8 \(\text{kN} \) > 19.61 \(\text{kN}\) ⇒ OK
 - Y-direction: Brace (X:100*50) = 2.6*2*4
 - 20.8 \(\text{kN} \) > 19.61 \(\text{kN}\) ⇒ OK

SECTION A-A'
APPENDIX: Wall ratio calculation

STEP 1: CHECKING

WIND LOAD

ELEVATION OF MODEL

<table>
<thead>
<tr>
<th>Related wall area</th>
<th>1st floor</th>
<th>Ground floor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Floor</td>
<td>7.5m * 1.0m + 6.3m * 1.15m = 14.75m²</td>
<td>5.4m * 1.0m / 2 + 5.4m * 1.15m = 8.91m²</td>
</tr>
<tr>
<td>Ground floor</td>
<td>7.5m * 1.0m + 6.3m * (2.5m + 1.65m) = 33.65m²</td>
<td>5.4m * 1.0m / 2 + 5.4m * (2.5m + 1.65m) = 25.11m²</td>
</tr>
</tbody>
</table>

Wall ratio

<table>
<thead>
<tr>
<th>1st Floor</th>
<th>Requirement</th>
<th>Capacity</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.75m² * 0.98kN/m = 14.46kN</td>
<td>Brace (X:100*50) = 2.6 * 2 * 4 = 20.8 kN</td>
<td>20.8 kN > 14.64kN ⇒ OK</td>
</tr>
<tr>
<td></td>
<td>33.65m² * 0.98kN/m = 33.62kN</td>
<td>Brace (X:100*50) = 2.6 * 2 * 4 = 20.8 kN</td>
<td>20.8 kN > 8.73kN ⇒ OK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ground floor</th>
<th>Requirement</th>
<th>Capacity</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33.65m² * 0.98kN/m = 33.62kN</td>
<td>(3920000 * 0.096) / 1000 = 376.32 kN</td>
<td>376.32 kN > 35.92 kN ⇒ OK</td>
</tr>
<tr>
<td></td>
<td>25.11m² * 0.98kN/m = 25.60kN</td>
<td>(3920000 * 0.096 * 1.5) / 1000 = 564.48kN</td>
<td>564.48kN > 25.60kN ⇒ OK</td>
</tr>
</tbody>
</table>

Notes

1. The requirement of wall ratio, In case of Japan, The requirement of the wall length is 50cm/m² based on 1.96kN/m. Therefore, The requirement of wall ratio will be 0.98kN as per related wall area. The requirement is 0.98KN/m².
2. Estimated wind speed : In Japan, Estimated wind speed is 34m/s (10min average), and In Indian Standard 55m/s (3second average). It can assume, 3 second average is equivalent 1.5 ~ 2.0 times of 10 min average. Therefore, Japanese method also applicable for wind check for ordinary house.
Lateral stiffness ratio

The lateral stiffness ratio R_s of each story (except the basement) shall be equal to or greater than 0.6.

$$R_s = \frac{r_s}{\bar{r}_s} \geq 0.6$$

where, r_s is the lateral stiffness, which is defined as the story height divided by the story drift caused by the lateral seismic shear for moderate earthquake motions, and \bar{r}_s is the mean lateral stiffness that is defined as the arithmetic mean of r_s's

Check for lateral stiffness ratio for load case Eqx of sample model:

<table>
<thead>
<tr>
<th>Story</th>
<th>Story height</th>
<th>Interstory drift (mm)</th>
<th>Lateral stiffness (rs)</th>
<th>Mean lateral stiffness \bar{r}_s</th>
<th>Lateral stiffness ratio R_s</th>
<th>Permissible Lateral stiffness Ratio</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3000</td>
<td>7.7</td>
<td>0.0025</td>
<td>0.0026</td>
<td>0.96</td>
<td>≥ 0.6</td>
<td>Ok</td>
</tr>
<tr>
<td>2</td>
<td>2500</td>
<td>7.68</td>
<td>0.0027</td>
<td>1.39</td>
<td>≥ 0.6</td>
<td>Ok</td>
<td></td>
</tr>
</tbody>
</table>

Check for lateral stiffness ratio for load case Eqy of sample model:

<table>
<thead>
<tr>
<th>Story</th>
<th>Story height</th>
<th>Interstory drift (mm)</th>
<th>Lateral stiffness (rs)</th>
<th>Mean lateral stiffness \bar{r}_s</th>
<th>Lateral stiffness ratio R_s</th>
<th>Permissible Lateral stiffness Ratio</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3000</td>
<td>9.18</td>
<td>0.0031</td>
<td>0.0030</td>
<td>1.03</td>
<td>≥ 0.6</td>
<td>Ok</td>
</tr>
<tr>
<td>2</td>
<td>2500</td>
<td>7.22</td>
<td>0.0029</td>
<td>0.97</td>
<td>≥ 0.6</td>
<td>Ok</td>
<td></td>
</tr>
</tbody>
</table>
This page is intentionally left blank
Building description:
Sample building used in this calculation is a Two Story Mix Structural System Building with Low Strength Stone Masonry in Ground Floor and Timber Structure in Upper Floor.

Building type: Residential building
Plan shape: Rectangular
Plinth area: 34.02 sq.m.
Number of storey: Two (Ground floor low strength masonry and upper storey timber structure)
Total height: 5.5m from plinth level
Inter storey height: Ground floor 3m and upper floor 2.5m
Building system: Mixed: Ground floor low strength load bearing masonry and upper floor timber structure.
Basic Assumption

1. Unit weight of Materials

Unit weight of the materials is taken from IS 875 part I

- **Unit Weight of Masonry**: 19.00 KN/m³
- **Unit Weight of Timber**: 5.75 KN/m³
- **Unit Weight of Floor Covering**: 19.00 KN/m³
- **Weight per m² of CGI Sheet**: 0.13 KN/m²

i. Material Properties

a. Stone Masonry Wall

- **Modulus of Elasticity (E)**: 74 Mpa
- **Allowable Compressive Strength**: 0.47 Mpa
 (Calculated From IS 1905: Code of Practice for structural use of unreinforced masonry)
- **Allowable Tensile Strength**: Neglected
- **Allowable Shear Strength**: 0.096 Mpa (From Shake table test of China)

b. Timber: Soft Wood (Chir) (As per NBC 112:1994)

- **Allowable Tensile Strength (ft)**: 6.9 Mpa
- **Allowable Compressive Strength (fc)**: 5.5 Mpa
- **Allowable Shear Strength (fs)**: 0.6 Mpa

Load calculation

Dead Load and Live Load:

Dead Load

- **Unit Weight of Masonry**: 19.00 KN/m³
- **Unit Wt. of RCC**: 25.00 KN/m³
- **Unit Weight Timber**: 5.75 KN/m³
- **Unit Weight of Floor Covering**: 16.00 KN/m³
- **Weight per m² of CGI Sheet**: 0.13 KN/m²

Load from Floor

- **Length of Building**: 6.30 m
- **Width of Building**: 5.40 m
- **Width of Timber**: 0.08 m
- **Depth of Timber**: 0.10 m
- **Spacing of Timber in X direction**: 0.59 m

- **Total Length of timber (m)**: 58.15 m
- **Total Weight of timber**: 2.51 KN
- **Depth of Floor Covering**: 0.15 m
- **Weight per area of Floor Covering**: 16.00 KN/m²
- **Total Dead Weight of Floor**: 84.16 KN
- **Weight Density per m² of Floor**: 2.47 KN/m²
<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load from Roof</td>
<td></td>
</tr>
<tr>
<td>Length of Building</td>
<td>6.30 m</td>
</tr>
<tr>
<td>Width of Building</td>
<td>5.40 m</td>
</tr>
<tr>
<td>Height of Roof</td>
<td>1.15 m</td>
</tr>
<tr>
<td>Inclined Length of One roof</td>
<td>3.99 m</td>
</tr>
<tr>
<td>Spacing of Purlin</td>
<td>1.00 m</td>
</tr>
<tr>
<td>Width of purlin</td>
<td>0.05 m</td>
</tr>
<tr>
<td>Depth of Purlin</td>
<td>0.05 m</td>
</tr>
<tr>
<td>Length of purlin</td>
<td>34.02 m</td>
</tr>
<tr>
<td>Spacing of Rafter</td>
<td>1.00 m</td>
</tr>
<tr>
<td>Width of Rafter</td>
<td>0.080 m</td>
</tr>
<tr>
<td>Depth of Rafter</td>
<td>0.14 m</td>
</tr>
<tr>
<td>Length of Rafter</td>
<td>50.24 m</td>
</tr>
<tr>
<td>Weight of Purlin</td>
<td>0.49 KN</td>
</tr>
<tr>
<td>Weight of Rafter</td>
<td>3.24 KN</td>
</tr>
<tr>
<td>Weight of CGI Sheet</td>
<td>7.51 KN</td>
</tr>
<tr>
<td>Total Wt of Roof</td>
<td>11.23 KN</td>
</tr>
<tr>
<td>Wt per M2 of Roof</td>
<td>0.33 KN/m2</td>
</tr>
<tr>
<td>Live Load</td>
<td></td>
</tr>
<tr>
<td>Live load Intensity on floor</td>
<td>3.00 KN/m2</td>
</tr>
<tr>
<td>Live load Intensity on Roof</td>
<td>0.49 KN/m2</td>
</tr>
<tr>
<td>Load on Floor Rafter</td>
<td></td>
</tr>
<tr>
<td>Live load</td>
<td>1.755 KN/m</td>
</tr>
<tr>
<td>Dead Load</td>
<td>1.447 KN/m</td>
</tr>
<tr>
<td>Load on roof rafter</td>
<td></td>
</tr>
<tr>
<td>Live load</td>
<td>0.287 KN/m</td>
</tr>
<tr>
<td>Dead Load</td>
<td>0.193 KN/m</td>
</tr>
<tr>
<td>Timber Plank Wall load</td>
<td></td>
</tr>
<tr>
<td>Width of plank</td>
<td>0.038 m</td>
</tr>
<tr>
<td>Height</td>
<td>2.5 m</td>
</tr>
<tr>
<td>Unit weight</td>
<td>16 KN/m3</td>
</tr>
<tr>
<td>Weight</td>
<td>1.52 KN/m</td>
</tr>
</tbody>
</table>
Seismic Load Calculation:
Seismic load calculation is done as per NBC: 105.

<table>
<thead>
<tr>
<th>Zone Factor</th>
<th>Z</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importance factor</td>
<td>I</td>
<td>1</td>
</tr>
<tr>
<td>Structural performance factor</td>
<td>K</td>
<td>2.5</td>
</tr>
</tbody>
</table>

- **Height of the building**
 - \(h \) = 5.5 m

- **Dimension of the building**
 - Along X: \(D_x \) = 6.300 m
 - Along Y: \(D_y \) = 5.4 m

- **Time period of the building**
 - Along X: \(T_x = \frac{0.09h}{\sqrt{D_x}} = 0.197 \) sec
 - Along Y: \(T_y = \frac{0.09h}{\sqrt{D_y}} = 0.213 \) sec

- **Soil type**
 - Soft type

- **Basic seismic coefficient along X**
 - \(C_x \) = 0.08

- **Basic seismic coefficient along Y**
 - \(C_y \) = 0.08

- **Design horizontal seismic coefficient**
 - \(C_d = CZIK \) = 0.2

Wind Load Calculation:

- **Design velocity of Wind \((V_b) = 55 \text{ m/s}\)**
 (Considering Upper Part of Nepal, Figure 1.1, NBC 101:1994)

- **Probability factor \((K_1) = 1\)**
 (For general building and structure with wind speed \(=55 \text{ m/s}, Table 1, Clause 5.3.1, IS 875(Part3):1987)

- **Terrine Category** = 1 (Taking most severe)

- **Building Class** = A (Lateral Dimension less than 20m)

 - For Building Class A and terrine category 1, Height is smaller than 10m)

- **Terrine, height and structure size factor \((K_2) = 1.05\)**

 - Assuming Slope angle = \(20^\circ\)
 - \(C = 0.36 \) (Slope angle = \(20^\circ > 17^\circ\))
 - \(S = 1 \) (Most Severe Case)

- **Topography Factor \((K_3) = 1+CS =1+0.36*1 =1.36\)**

 - Base on the building Dimension following coefficient is calculated
Detailed Structural Analysis

- Finite Element Modeling of the building of Supreme is done by using the structural analysis and design software program SAP 2000 vs 19. For the analysis of the system, whole building is modelled. Load bearing stone masonry walls modelled as single layered shell elements. Timber member of roof and floor is modeled as the line element with 4 degree of freedom in each node ie. Pinned joint.

Nepal National Building Code NBC 105:1994 is used for the seismic load calculations and IS 875(part 3):1987 and NBC 104:1994 is used for the wind load calculation. 3D view of the analytical model is shown in Figure.

Figure 5: 3D Analytical Model of the Building

Load on Wall/Cladding of the building

<table>
<thead>
<tr>
<th>Wall</th>
<th>Angle of wind =0°</th>
<th>Angle of Wind =90°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cpe</td>
<td>Cpi</td>
</tr>
<tr>
<td>A</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>B</td>
<td>-0.25</td>
<td>-0.5</td>
</tr>
<tr>
<td>C</td>
<td>-0.6</td>
<td>-0.5</td>
</tr>
<tr>
<td>D</td>
<td>-0.6</td>
<td>-0.5</td>
</tr>
</tbody>
</table>

Load on Pitched Roof (Roof angle = 23°)

<table>
<thead>
<tr>
<th>Portion</th>
<th>Angle of wind =0°</th>
<th>Angle of Wind =90°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cpe</td>
<td>Cpi</td>
</tr>
<tr>
<td>Wind Ward</td>
<td>-0.55</td>
<td>-0.5</td>
</tr>
<tr>
<td>Leeward</td>
<td>-0.5</td>
<td>-0.5</td>
</tr>
</tbody>
</table>
SEISMIC ANALYSIS

The seismic analysis is a part of the detailed evaluation of an existing building. The steps involve in developing a computational model of the building include applying the external forces, calculating the internal forces in the members of the building, identifying deformations and capacity of the members and building, and finally interpreting the results. The structural analysis is carried out with the help of the available drawings and SAP 2000 vs 19. Seismic coefficient method is used to analyze the building.

Calculation of Base Shear

<table>
<thead>
<tr>
<th>Load Pattern</th>
<th>Type</th>
<th>Direction</th>
<th>C</th>
<th>Weight Used (KN)</th>
<th>Base Shear (KN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQX</td>
<td>Seismic</td>
<td>X</td>
<td>0.2</td>
<td>612.789</td>
<td>122.558</td>
</tr>
<tr>
<td>EQY</td>
<td>Seismic</td>
<td>Y</td>
<td>0.2</td>
<td>612.789</td>
<td>122.558</td>
</tr>
</tbody>
</table>

Load Combination for analysis of the building

Load Considered for the analysis:
- Dead Load (DL)
- Live Load (LL)
- Earthquake Load (EQ)

Load Combination: For Working Stress method As per NBC 105:
- DL+LL
- 0.7DL+EQx
- 0.7DL-EQx
- 0.7DL+EQy
- 0.7DL-EQy
- DL+LL+EQx
- DL+LL-EQx
- DL+LL+EQy
- DL+LL-EQy

Check for Deflection

Deflection check is done as per the requirement of NBC 105 Clause 9. The design lateral deformations is taken as the deformations resulting from the application of the design force, multiplied by the factor 5/K. As per NBC 105 Clause 9.3 The ratio of the inter-story deflection to the corresponding story height shall not exceed 0.010 nor shall the inter-story deflection exceed 60 mm. Detail check of deflection is shown in table below.
Modeling output for existing building
(Mention that the masonry building has been checked for stresses and found to be safe. Details of analysis and design is shown only for the upper story timber structure)
Initially, building is modeled and axial forces for different load combination is studied. The axial force develop for envelope combination is shown below.

Axial Forces

<table>
<thead>
<tr>
<th>Story</th>
<th>Maximum Deflection (D)mm</th>
<th>Story Height (h) mm</th>
<th>Structural Performance Factor (K)</th>
<th>Design Lateral Deflection (D*5/K) mm</th>
<th>Interstory Drift</th>
<th>Interstory Drift Ratio</th>
<th>Permissible Interstory Drift Ratio</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.85</td>
<td>3000</td>
<td>2.5</td>
<td>7.7</td>
<td>7.7</td>
<td>0.0025</td>
<td>0.01</td>
<td>OK</td>
</tr>
<tr>
<td>2</td>
<td>7.19</td>
<td>2500</td>
<td>2.5</td>
<td>14.38</td>
<td>6.68</td>
<td>0.0027</td>
<td>0.01</td>
<td>OK</td>
</tr>
</tbody>
</table>

Check For deflection for Load Case EQX

Check For deflection for Load Case EQY
WIND LOAD ANALYSIS

Wind load analysis is done as per IS 875(part 3) :1987 and NBC 104 :1994. The steps involve in
developing a computational model of the building include applying the external forces,
calculating the internal forces in the members of the building, identifying deformations and
capacity of the members and building, and finally interpreting the results. The structural
analysis is carried out with the help of the available drawings and SAP 2000 vs 19.

1. **Calculation of Wind load**
2. Joint Reaction at the base of timber floor.

3. **Load Combination for analysis of the building**
4. Load Considered for the analysis:
 - Dead Load (DL)
 - Live Load (LL)
 - Earthquake Load (W)

Load Combination: For Working Stress method As per NBC 105:
- DL+LL
- 0.7DL+0.7W
- 0.7DL+W0
- 0.7DL-W0
- 0.7DL+W90
- 0.7DL-W90
- DL+LL+W0
- DL+LL-W0
- DL+LL+W90
- DL+LL-W90
- DL+LL+W180
- DL+LL-W180
Modeling output for existing building

Initially, building is modeled and axial forces for different load combination is studied. The axial force develop for envelope combination is shown below.

Envelope Axial Force (X-direction: Grid 1-1)

Envelope Axial Force (X-direction: Grid 2-2)

Envelope Axial Force (Y-direction: Grid A-A)

Envelope Axial Force (Y-direction: B-B)
1. Design of structure:

Timber members are mainly designed for the axial force induced due to envelope load combination of earthquake and wind load. Design force is taken from the maximum force due to earthquake and wind load. Working stress method is used for the design of timber element. Design force for different member is listed below.

<table>
<thead>
<tr>
<th>Member</th>
<th>Earthquake Load</th>
<th>Wind Load</th>
<th>Design Force</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tension (KN)</td>
<td>Compression (KN)</td>
<td>Tension (KN)</td>
</tr>
<tr>
<td>Bracing</td>
<td>6.94</td>
<td>7.14</td>
<td>19.64</td>
</tr>
<tr>
<td>Vertical Post</td>
<td>4.54</td>
<td>8.68</td>
<td>12.74</td>
</tr>
<tr>
<td>Wall Plate</td>
<td>11.72</td>
<td>13.11</td>
<td>31.05</td>
</tr>
<tr>
<td>Rafter</td>
<td>1.01</td>
<td>13.17</td>
<td>24.13</td>
</tr>
<tr>
<td>H. batten</td>
<td>1.51</td>
<td>2.06</td>
<td>3.21</td>
</tr>
<tr>
<td>Verandah Post</td>
<td>0</td>
<td>7.51</td>
<td>2.51</td>
</tr>
</tbody>
</table>

Design of Bracing

Induced tensile force = 19.64 KN
Induced Compressive force = 23.42 KN
Modulus of elasticity E = 9400 Mpa
Allowable tensile strength (ft)= 6.9 Mpa
Allowable Compressive Strength (fc)= 5.5 Mpa
Allowable Shear Strength (fs)= 0.6 Mpa
Use 50 X 115 mm Size of Bracing element

Length of Member (L)= 1.3 m
Width of Member (B) = 0.05 m
Depth of Member (D) = 0.115 m
Length / Width ratio (L/B) = 26 (<50 OK)
Sectional area of Bracing (A) = 0.0058 m²

Check for tension
Tensile Capacity of Member = A* ft = 39.675 KN >19.64 OK

Check for compression
K8 = Constant = 0.702 E /fc = 12.37
Since L/B ratio is greater than K8, Design as long Column
Permissible Compression Stress, fc = 4.57 Mpa

\[0.329\frac{E}{(L/d)^2} = \]
Compressible Capacity = A* fc = 26.31 KN >23.42 OK
Design of Vertical Post

Induced tensile force = 12.74 KN
Induced Compressive force = 16.46 KN
Modulus of elasticity E = 9400 Mpa
Allowable tensile strength (ft)= 6.9 Mpa
Allowable Compressive Strength (fc)= 5.5 Mpa
Allowable Shear Strength (fs)= 0.6 Mpa
Use 75 X 75 mm Size of Vertical post element

Length of Member (L)= 2.4 m (Leff =2.4)
Width of Member (B) = 0.075 m
Depth of Member (D) = 0.075 m
Length / Width ratio (L/B) = 32 (<50 OK)
Sectional area of Bracing (A) = 0.0056 m²
Check for tension
Tensile Capacity of Member = A* ft = 38.8125 KN >12.74 OK
Check for compression
K8 = Constant = 0.702 E / fc = 12.37
Since L/B ration is greater than K8 , Design as long Column
Permissible Compression Stress, fc = 0.329*E/(L/d)² = 3.02 Mpa
Compression Capacity = A* fc = 16.99 KN >16.46 OK

Design of Rafter

Induced tensile force = 24.13 KN
Induced Compressive force = 37.56 KN
Modulus of elasticity E = 9400 Mpa
Allowable tensile strength (ft)= 6.9 Mpa
Allowable Compressive Strength (fc)= 5.5 Mpa
Allowable Shear Strength (fs)= 0.6 Mpa
Use 80 X 140 mm Size of Rafter element

Length of Member (L)= 2.4 m (Leff =2.4)
Width of Member (B) = 0.08 m
Depth of Member (D) = 0.14 m
Length / Width ratio (L/B) = 30 (<50 OK)
Sectional area of Bracing (A) = 0.0112 m²
Check for tension
Tensile Capacity of Member = A* ft = 77.28 KN >24.13 OK
Check for compression
K8 = Constant = 0.702 E / fc = 12.37
Since L/B ration is greater than K8 , Design as long Column
Permissible Compression Stress fc = 0.329*E/(L/d)² = 3.44 Mpa
Compression Capacity = A* fc = 38.49 KN >37.56 OK
Design of Wall Plate:

- Induced tensile force = 31.05 KN
- Induced Compressive force = 21.3 KN
- Modulus of elasticity E = 9400 Mpa
- Allowable tensile strength (ft) = 6.9 Mpa
- Allowable Compressive Strength (fc) = 5.5 Mpa
- Allowable Shear Strength (fs) = 0.6 Mpa

Use 75 X 100 mm Size of Wall plate element

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Member (L)</td>
<td>0.5 m</td>
</tr>
<tr>
<td>Width of Member (B)</td>
<td>0.075 m</td>
</tr>
<tr>
<td>Depth of Member (D)</td>
<td>0.1 m</td>
</tr>
<tr>
<td>Length / Width ratio (L/B)</td>
<td>6.66667</td>
</tr>
</tbody>
</table>

Sectional area of Bracing (A) = 0.0075 m²

Check for tension

- Tensile Capacity of Member = A * ft = 51.75 KN > 31.05 OK

Check for compression

K8 = Constant = 0.702 E / fc = 12.37

Since L/B ratio is smaller than K8 and 11, Design as short column

Permissible Compression Stress fc = 0.329 * E / (L/d)² = 5.50 Mpa

Compression Capacity = A * fc = 41.25 KN > 21.3 OK

Design of Horizontal Batten:

- Induced tensile force = 3.21 KN
- Induced Compressive force = 3.51 KN
- Modulus of elasticity E = 9400 Mpa
- Allowable tensile strength (ft) = 6.9 Mpa
- Allowable Compressive Strength (fc) = 5.5 Mpa
- Allowable Shear Strength (fs) = 0.6 Mpa

Use 25 X 75 mm Size of Batten element.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of Member (L)</td>
<td>0.975 m</td>
</tr>
<tr>
<td>Width of Member (B)</td>
<td>0.025 m</td>
</tr>
<tr>
<td>Depth of Member (D)</td>
<td>0.075 m</td>
</tr>
<tr>
<td>Length / Width ratio (L/B)</td>
<td>39</td>
</tr>
</tbody>
</table>

Sectional area of Bracing (A) = 0.0019 m²

Check for tension

- Tensile Capacity of Member = A * ft = 12.9375 KN > 3.21 OK

Check for compression

K8 = Constant = 0.702 E / fc = 12.37

Since L/B ratio is greater than K8, Design as long column

Permissible Compression Stress = 0.329 * E / (L/d)² = 2.03 Mpa

Compression Capacity = A * fc = 3.81 KN > 3.51 OK
Design of Verandah Post:

- Induced tensile force = 2.51 KN
- Induced Compressive force = 11.08 KN
- Modulus of elasticity E = 9400 Mpa
- Allowable tensile strength (ft) = 6.9 Mpa
- Allowable Compressive strength (fc) = 5.5 Mpa
- Allowable Shear strength (fs) = 0.6 Mpa

Use 100 X 100 mm Size of Verandah post element

- Length of Member (L) = 3 m (Leff =2.4)
- Width of Member (B) = 0.1 m
- Depth of Member (D) = 0.1 m
- Length / Width ratio (L/B) = 30 (<50 OK)
- Sectional area of Bracing (A) = 0.0100 m²

Check for tension

Tensile Capacity of Member = $A * ft$ = 69 KN > 2.51 OK

Check for compression

$K_8 = \text{Constant} = 0.702 \frac{E}{fc}$ = 12.37

Since L/B ration is greater than K8, Design as long Column

Permissible Compression Stress = $0.329 \frac{E}{(L/d)^2}$ = 3.44 Mpa

Compression Capacity = $A * fc$ = 34.36 KN > 11.08 OK

Design of Connection

Connection of Post and Wall Plate

- Tensile Force on the post = 12.74 KN
- Compression Force on the post = 14.46 KN
- Yield Strength of Steel plate (fy) = 250 Mpa
- Strength of Plate in tearing (ft) = 150 Mpa
- Shear Strength of bolt (tb) = 100 Mpa

Use 12 mm dia bolt

- Diameter of the Bolt (d) = 12 mm
- Shear Area of Bolt in Single Shear = 113.1 mm²
- Capacity of one bolt in Single Shear = 11.31 KN

Number of Bolt required = 6

Use 2-12 mm Bolt

Check for tearing of Plate

- Thickness of plate = 4 mm
- Effective length (l-n*d0) = 126 mm

Tearing Capacity = 75.6 KN > 12.74
Connection of Bracing, Post and Wall plate

- Tensile force of the post = 12.74 KN
- Compression Force on the post = 16.76 KN
- Tensile force on the Bracing = 19.64 KN
- Angle of Bracing = 64 deg
- Compression force on the Bracing = 23.42 KN
- Net vertical Force in Connection = 37.81 KN
- Net Horizontal Force in Connection = 8.61 KN
- Yield Strength of Steel plate (fy) = 250 Mpa
- Strength of Plate in tearing (ft) = 150 Mpa
- Shear Strength of bolt (tb) = 100 Mpa

Use 12 mm dia bolt

- Diameter of the Bolt (d) = 12 mm
- Shear Area of Bolt in Single Shear = 113.1 mm²
- Capacity of one bolt in Single Shear = 11.31 KN

Number of Bolt required in Bracing = 6 Nos

Number of Bolt required in Post = 6 Nos

Number of Bolt in wall Plate = 2 nos

Use 2-12 mm dia @ bracing and post and 4-12 mm dia bolt in Wall plate

Check for tearing of Plate

- Thickness of plate = 4 mm
- Effective length (l-n*d0) = 76 mm
- Tearing Capacity = 45.6 KN >37.87 OK

Connection of Rafter and Wall plate

- Tensile Force on the Rafter = 24.13 KN
- Compression Force on the Rafter = 37.56 KN
- Yield Strength of Steel plate (fy) = 250 Mpa
- Strength of Plate in tearing (ft) = 150 Mpa
- Shear Strength of bolt (tb) = 100 Mpa

Use 12 mm dia bolt

- Diameter of the Bolt (d) = 12 mm
- Shear Area of Bolt in double Shear = 226.2 mm²
- Capacity of one bolt in double Shear = 22.62 KN

Number of Bolt required = 1.06678

Use 1-12 mm Bolt

Check for tearing of Plate

- Thickness of plate = 4 mm
- Effective length (l-n*d0) = 48 mm
- Tearing Capacity = 28.8 KN >24.13OK
Connection of Horizontal Batten and post

- Tensile Force on the post = 3.21 KN
- Compression Force on the post = 3.51 KN
- Yield Strength of Steel plate (fy) = 250 Mpa
- Strength of Plate in tearing (ft) = 150 Mpa
- Shear Strength of bolt (tb) = 100 Mpa

 Use 12 mm dia bolt

- Diameter of the Bolt (d) = 12 mm
- Shear Area of Bolt in Single Shear = 113.1 mm²
- Capacity of one bolt in Single Shear = 11.31 KN

 Number of Bolt required = 3

 Use 1-12 mm Bolt

Check for tearing of Plate

- Thickness of plate = 4 mm
- Effective length (l-n*d0) = 63 mm
- Tearing Capacity = 37.8 KN

 >3.21OK

Connection of Wall plate and Masonry wall

- Maximum Uplift force on Wind = 141.906 KN

 At least 4 vertical post will be there and 8 nail at each vertical

 Number of Nails = 32

 Diameter of Nail = 3.55 mm

 Shear Strength = 100 Mpa

 Shear Area of each nail = 9.90 mm²

 Shear Capacity of each nail = 0.99 KN

 Total Capacity = 31.7 KN

 Residual Uplift Force = 110.23 KN

 Use Gabion wire , of 3.25 mm dia

 Diameter of gabion = 3.25 mm

 Section Area of gabion wire = 16.59 mm²

 Tensile Strength of the Gabion = 140 Mpa

 Capacity at Each level = 2.323 KN

 Number of Gabion Required = 47.46 Nos

 Total Length of Wall = 21.6 m

 Spacing required for Gabion = 455.2 mm

 Provide gabion of 3.25 mm (10 Gauge) at the spacing of 450 mm C/C throughout the wall
APPENDIX: Connection details

VIEW -1A
75
37.5 37.5
85 27.95
11515 1.05
19.95 1.05 181518

VIEW -1B
75
37.5 37.5
85 27.95
11515 1.05
19.95 1.05 181518

VIEW -2A
75
19.95
181518 1.05

VIEW -2B
75
19.95
181518 1.05

FRONT VIEW -1
(TO BE USED FOR FLOOR AND ROOF BANDAGE)

FRONT VIEW -2
(TO BE USED FOR SILL/LINTEL BANDAGE AND CORNER STITCH)

VIEWS FROM DIFFERENT SIDES

PLAN VIEW
CGI SHEET DETAIL
(ALTERNATE OPTION FOR METAL STRIP)
SCALE = 1:5

PLAN VIEW
METAL STRIP DETAIL
SCALE = 1:5